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Abstract 

It is known that for a polynomial automorphism F with strongly nilpotent Jacobian matrix 
the automorphism SF is linearizable for some scalar s. This paper gives a slight generalization 
of this property and describes a class of linearizable polynomial maps of finite order which 
includes triangular automorphisms. Some conditions of proven theorems enable us to give a 
counterexample to the Linearization problem and the Fixed point problem in finite characteristics. 
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1. Introduction 

Let k be a field, not necessarily algebraically closed. By A” we denote the affine 

space of dimension n over k. The problem which we are studying is the following: 

How can an algebraic group G act algebraically on ajtine space A”? 

As an example of such an action one can take the action of GL,(k) on k” Z A\” in 

the natural way. This example can be generalized as follows. Denote by %,, the group 

of algebraic automorphisms of affine space A”. An element F of this group can be 

given by an n-tuple (fi,. . .,fn) of polynomials fi E k[xi,. . ,x,1 with the condition 

that they generate the same polynomial ring, i.e. k[fi, . . . , fn] = k[nl, . . . ,xJ. In terms 

of algebraic maps it means that F gives an invertible algebraic morphism of A” to 

itself. We call this group the affine Cremona group. 
This group has a structure of an infinite-dimensional algebraic group as it was shown 

by Shafarevich [ 1 l] and the action of subgroups of this group can be viewed in the 
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context of our question. Any element of 3, generates a subgroup and we can ask how 

this element acts on affine space. 

The group 9 contains two important subgroups defined in the following way: 

Afs,(k) = {F = (fi, . . . , fn) E ?Yn Ifi is linear for all 1 < i 5 n}, 

fn={F=(f1,..* ,fn) E Snlfi E k[Xl,...,&l). 

The first one is the group of affine transformations and the second is called the Jon- 

quiere group and contains the triangular transformations. If F E B;n and F = (fi, . . . , fn) 

then 

fi(xl~. ..,Xi)=SjXi+gi(Xl,...,Xi-1) 

and si E k*. 

Definition 1.1. We say that a polynomial map is linearizable if it is conjugated to 

some element of A&(k) and it is triangularizable if it is an element of ,$% again up to 

conjugation by an element of g,,. We give the same names to the action of a subgroup 

of g,, if any element of this subgroup is conjugated to an element of A&(k) or ktn, 

respectively. 

The following results were proved for actions on affine space over the field of 

complex numbers but the questions for other ground fields are also valid and interesting. 

For II = 2 the Cremona group is generated by A&(k) and 2~ and it follows from 

a result of van der Kulk [9] that any action on affine space is either linearizable or 

triangularizable. In higher dimensions the structure of %?n is not so clear. The Cremona 

group for n > 3 probably is not generated by Jonquibre group and affine subgroup as 

an abstract group but it is known that it is generated by these subgroups as an algebraic 

group. To find an example of an element which is not in the subgroup generated by 

Afl,(k) and b but in its closure is an open problem and one candidate was conjectured 

by Nagata in [lo]. 

There exists also an example of an action of algebraic group on affine space of 

dimension 3 which is neither triangularizable nor linearizable. Such an action was first 

constructed by Bass [2]. 

One can consider a smaller class of subgroups acting on A”. Studying reductive 

subgroups of Y,, we can expect more properties for this action. There was stated: 

Linearization problem. Is any action of a reductive algebraic group G on afJine space 
linearizable? 

This problem was conjectured to be true by Kambayashi [7] but recently several 

counterexamples were found by Schwarz [ 121. If a group G acts on affine space one 

can consider a set (A”)’ of points fixed under this action. If action of the group is 
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linearizable then it must be isomorphic to some linear subspace of A”. This leads to 

another problem. 

Fixed point problem. Given an action of a reductive algebraic group G on A”. Is the 
fixed point set (14”)~ isomorphic to Ad for some d or at least not empty? 

In the case of non-reductive groups acting on affine space the action has no fixed 

points but if the group is reductive there is no general answer. 

Another interesting problem which is closely related to these two is: 

Cancelation problem. Given a variety Y and an isomorphism Y x Am 2 A” for some 

m and n. Does it imply that Y is isomorphic to A”-“? 

A positive solution of the Linearization problem or even the Fixed point problem 

would imply the positive answer to the Cancelation problem. Consider the action of 

E/2Z on Y x A” given by (x, y) H (x, -y). Then Y is the fixed point set, hence 

isomorphic to some Ad. The same trick can be done with any other reductive group 

acting on affine space, but this particular case is interesting in the context of statements 

proved below. 

We can view the contents of this paper from another angle. There is the well- 

known and still open Jacobian conjecture. Let us denote JF the Jacobian matrix of the 

transformation F = (f~, . . . , fn), i.e., 

JF = 

ig . . . $p 
n I 4 . . 

. : . 

5-& . . . g 
1 n 

Jacobian conjecture. Let k be a field of characteristic zero. Zf F : A” -+ A”, F = 

(fl,...,fn) is a polynomial mapping with JF E k’, then F is invertible, i.e., F E %,,. 

It is proved by Bass, et al. [3] that it is enough to show this for maps of the form 

F = X + H, where X = (xi,. . . ,xn), H = (hl,. . . , h,) and hi are cubic homogeneous 

polynomials such that JH is nilpotent. 

If we replace the condition that JH is nilpotent by the requirement that it is strongly 

nilpotent then this statement follows from the work of van den Essen and Hubbers [5]. 

This work will be discussed in Section 3. 

Studying this case further leads to the conjecture of Meisters which says: 

Conjecture (Meisters). Let F =X +H be a cubic homogeneous polynomial map with 
det JF = 1. Then for almost all s E k* (except for a finite set of roots of unity) the 
polynomial map SF is linearizable. 
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This conjecture turns out to be false as it was shown by van den Essen [4], but 

it becomes true after replacing the requirement of nilpotence of JF by strong nilpo- 

tence [5]. This paper gives a slight generalization of the last property and also gives a 

class of linearizable polynomial maps of finite order. Some conditions of proven the- 

orems enable us to give a counterexample to the Linearization problem and the Fixed 

point problem in finite characteristics. This example turns out to be much easier than 

the one which was given recently by Asanuma [l]. 

A more detailed overview can be found in the paper by Krafi [8]. 

2. Linearization of triangular maps 

From now on we denote by k a field and A” affine space over k of dimension n. 

We consider the subgroup $$, in Aut A” containing (lower) triangular transformations 

F = hxl + a1,s2x2 + a2(xl), . . . ,s,x, + a,(xl, . . . ,x,,_l )I, 

where all si # 0 and group law is given by (F . G)(xl,. . . ,-x,)=G(F(xl,. . . ,xn)). 

If A E G&(k) is a matrix then it can be considered as an element of AutA”, 

A = [allxl + . . . + ulnxn, . . , anIx + . . . + unnx,], 

in particular, if A E GL,( k) is a (lower) triangular matrix then 

and it acts on b by multiplication from the left. We denote the subgroup of such 

matrices T,(k). In the same way we can consider affine transformations as elements of 

Aut A”. 

The main result of this section is given by the following theorem. 

Theorem 2.1. Let k be a field and F : A” + A” a triangular polynomial map of the 

f orm 

F = 1~1x1 +u1,~2x2 +az(x1) ,..., snxn +a,(~1 ,..., x,-l)]. 

Then, if F”’ = I for some m E N and characteristic of k does not divide m, there 
exists a triangular automorphism cp E AutA” such that qp-‘Fq E A&(k). 

Before proving this we need some other results which in some sense generalize 

Theorem 3.2 from [5]. 

Theorem 2.2. Let k be a field and F : A” -+ A” a triangular polynomial map of the 

f orm 

F= [xl +al,xz+a2(xl) ,..., x,+a,(xl,..., x,-~>]. 
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For almost all A E T,,(k) there exists a triangular automorphism cp E Aut A” such 

that cp-‘AFq E Aff,(k). More precisely, consider a triangular matrix 

A= 

Sl 

a21 

0 

S2 

41 42 

(1) 

as a point of afine space A* of dimension d = i(n + 1)n. Then the matrices, for 

which the automorphism AF can be linearized, form a Zariski open subset in the 

space A*. The complement of this subset is dejned by equations in the variables si. 

The proof of this theorem is nearly analogous to that of Theorem 3.2 from [5]. 
First we need a definition and some lemmas. 

Definition 2.1. We introduce the reverse lexicographical order on monomials in n 

variables x1,. . . ,x,. Namely, we say xv . . . xk > x1 . . .x$ 
ii 

if ik > ii for some k E 
{1,2 ,..., n} andij=ij foralljE{k+l,..., n}. 

Lemma 2.3. For each 1 5 j 5 n - 1, let ej(xl, . . . ,xpl ) be linear in the variables 
xl,. . . ,xj_1 and let u E k*. Then the leading monomial with respect to the introduced 
order in expansion of 

n-1 

/l n(SjXj + ffj(Xl,. . . ,Xj-1))” 

j=l 

is 

Proof. The result follows from the fact that the leading monomial of the product is 
the product of leading monomials. 0 

Lemma 2.4. Zf F, G E $4 and for some 1 5 k 5 n they are linear up to (k - 1)th 
coordinate, then the highest-order term of the product (F . G)lk has order less then 

or equal to the maximum of orders of such terms of FIN and Glk. 

Proof. The proof follows from Lemmas 2 and 3 in [6]. 0 

Lemma 2.5. Let F be a polynomial map of the form 

[SlXl + el,Szx2 + {2(x1) ,..., s,-1X,-l + e,_l(Xl)...) x+2), 

SnXn + 4X1 ~...,X,-l)+e,(xl, . . . . xn-l)], 
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where a(xl 1-I , . , . ,X,-I) is a polynomial with leading monomial Ax: . . .x2:; and s’; . . .s,_~ 

3;’ # 13 fi(xl , . . . ,xi_ 1) are linear. Then there exists a polynomial map cp of trian- 

gular form such that 

q-li+p=[SIXl +Ll,SZXZ+d2(Xl),...,Sn-1X+1 +e,-l(Xl,...,Xn-2), 

s,x, + 6(X1 ,...,Xn-l)+~n(Xl,...,Xn-l)l, 

where the leading monomial of 6(x1,. . . ,x,-l ), say I_$ . . .xf:i, is of a strictly lower 

order than the leading monomial of a(xl, . . . ,x+1 ). 

Proof. Take rp of the special form 

cp = [Xl,..., x,-1,x, + px:’ . . .x;:;] 

for some p E k. We will try to find p such that 

FOP = V([SIXI + 81,S2X2 + t2(X1),...,Sn-1Xn-l + en-l(Xl,...,Xn-2), 

S,X, + a”(x1 ,...,X,-l)+e,(Xl,...,X,-l)l). (2) 

Automorphism cp does not change first (n - 1) coordinates, so we will look at the last 

one: 

Fq. =s,,xn+Axf’...x;:; +&(x1 ,..., x+,)+e,(xl,..., X,-I) 

II-1 

+pn(SjXj+6j(Xl9...,XI_-l))l’, 

j=l 

where 6(x1 ,...,x,_l)=a(xl,...,x,_l)-~x:‘...x~~l, andon the right-hand side, 

cp([Vl +~l,...,~n~n+~(~l,...,~,-l)+~n(~l,...,~,-l)1)J” 

= s,x, + s&xi1 1 . ..x.;; +qx, ,...,x,-l)+e,(xl,...,x,-l). 

By subtracting first equation from the second, under assumption (2), we get 

n-1 

(Sd - G: . ..xf. +B(x, ,...,X~-l)=/in(SjXj+fj(Xl,...,Xj_l))i’, 

j=l 

h-1 
where 2 = a” - a^. Now we can focus our attention to the coefficients of x:’ . . .x,,_,, 

because all other terms have strictly lower order. From Lemma 2.3 the right-hand side 

coefficient of xi1 . . . xi:; is wcsfl . . . ~2::. We have 

&-I Sn~--_=/.lS;...S,_, 

or 

P= in_, -1 ’ 
Sn(l -s; . ..s._ts, ) 

By assumption, sill . . .s::is;’ # 1 and s, # 0, so such p exists. 0 
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Now we can prove Theorem 2.2. 

Proof. First note that AF has lower triangular form, so we will look at such transfor- 

mations. Let 

F = [slxl + a1,s2x2 + a2(x1>, . . . ,s,x, + U,(XI, . . . ,x,-l )I. 

Then exactly in the same way as in [5, Theorem 3.21 applying previous lemma finite 

number of times one can get triangular automorphism with desired property. 

The complement of the Zariski open set where the linearization is possible is defined 

by equations of two types: 

also coming from the lemma. 0 

Finally, we come to the proof of Theorem 2.1. 

Proof. First of all note that if F”’ = Z then .Y? = 1 for all i. Now we are going to 

follow the proof of Theorem 2.2 constructing cp with the desired property. There q 

was constructed as the composition of isomorphisms lowering the order of coordinates 

of F. The first coordinate is obviously linear. We are going to prove the theorem 

using induction on coordinates and inverse induction on the highest order of terms 

of coordinates. By Lemma 2.4 this order cannot become higher than the highest or- 

der of the original transformation. By induction hypothesis there exists cp,&iangular 

automorphism such that q;‘Fcpk is linear up to (k - 1)th coordinate. Let 

G = (P;%Q = [SIXI + e1,~2x2 + 82(x1), 

. . . ..P-1%-l +~~-1(~1,...,~~-2),~k~k+g(X1,...,X~-l),...lr 

where d&t,. . . ,x+1) are linear and 

Gm = (cp-‘F&” = cp-$““cp = 1, 

It remains to show that there exists an automorphism + such that 

$-‘G$ = [six1 + ~1,szxz + ez(x1), 

“., Sk--1X&1 +ek-l(xl,..., W--2)rWk +&xl,...,xk-l),...l 

and # has strictly lower order than g. 

By Lemma 2.5 we can do this if sy . . . .s~:~s;’ # 1 where Ax? . . . xi:; is the highest 
C-1 -1 order term of g. Suppose sy . . . s~_~s~ = 1. We are going to look at the coefficient p 

of highest-order term of k th coordinate of G”. By Lemma 2.4 it has the same order 

as the highest-order term of kth coordinate of G or lower (then p = 0): 

G=[slxl +e,,..., %-lxk-l +~k-l(xl,...,-W-2), 

Sk,& + hzxy, . ..$I. +&l,..., xk-1) ,... 1, 
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using notation from the proof of Lemma 2.5, 

G2 = [ . . . . S:Xk+~(Sk+S:‘Ys,“~~)xf~-.x~~; + . ..)... 1, 

and finally 

by the relation s: . ’ . ,s~:~s~’ = 1. Thus, the k th coordinate of G” is not equal to Xk 

but G” = I. This contradiction shows that s: .. .sz:is;’ # 1 on every step of the 

construction of the automorphism and F is linearizable. 0 

3. Linearizable maps with scalar diagonal 

Let F be a polynomial automorphism. We can write it in the form F = X + H 

where X = (XI , . . . ,x,) and H = (Hl(xl,. . . ,xn), . . . ,H,(xl,. . . ,x,)). By JH we denote 

the Jacobian matrix of H. 

Definition 3.1. The Jacobian matrix JH is called strongly nilpotent if the matrix JH 
(q,,) .. . JH(q,)) = 0, where Y(i) are n sets of n new variables. 

In [5] it is proved that if F is a polynomial map with strongly nilpotent Jacobian 

matrix then there exists an automorphism T E G&(k) such that T-‘FT is triangular. 

By C(F) we denote the centralizer of T in G,&(k). 

Theorem 3.1. Let k be a field and F : A” -+ G” a polynomial map of the form 
F = X + H with JH strongly nilpotent. Then for all A E C(F) rl T,(k) of the 
form (1) for which s;’ ’ . . s$ # 1 for some Jinite set of vectors (iI,. . , i,,) E Z” there 
exists a linearly triangularizable automorphism cp E Aut A” such that (p-‘AFq E 

Afsn(k). 

Remark. C(F) n T,(k) # 0 (it contains scalar matrices). After applying the conditions 

it is again nonempty. 
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Proof. By the Theorem 1.6 from [5] there exists T E GL,(k) such that T-‘FT has 

triangular form. We have 

G = T-‘AFT = AT-‘FT E j$ 

and by Theorem 2.2 there exists a triangular automorphism I,$ E AutA” such that 

t/-‘G$ is linear. Defining q = T$T-’ we get that cp-‘AFq is linear. 0 

Corollary 3.2 (Van den Essen and Hubbers [5, Theorem 3.21). Let PC be a field, F : 

A” -+ A” a polynomial map of the form F = X + H with JH strongly nilpotent. 

Then for all s except for a finite set of roots of unity, there exists a k-linearly 

triangularizable automorphism cp such that cp-‘sFq E A&(k). 

Proof. Scalar matrix commute with any matrix from GL,(k). 0 

Theorem 3.3. Let k be a field and F : A” ---t A” a polynomial map of the form 
F = X + H with JH strongly nilpotent. Then, if (SF)“’ = I for some s E k and m E N 

and the characteristic of k does not divide m, there exists a linearly triangularizable 

automorphism cp E AutA” such that cp-‘sFq E A&(k). 

Proof. By the Theorem 1.6 from [5], F is triangularizable so there exists T E G,&(k) 

such that TT’FT E y,,. Then 

(T-‘sFT)~ = (sT-‘FT)~ = T-‘(sF)~T = I 

and by Theorem 2.1 there exists $ E Aut A” such that I+-’ T-‘sFT+ is triangular. 

Letting q = T$ T-l, we get the desired result. q 

4. Non-linearizable reductive group actions 

Theorems 2.1 and 2.2 provide some conditions to check whether the triangular map 

is linearizable. What happens if these conditions are not satisfied? 

Theorem 2.1 is true if the characteristic of the field does not divide the order 

of the transformation. It is easy to give an example of a non-linearizable map if 

this condition is not satisfied. Take k = FP for some prime p and the map F = 
[x, y +x(x - 1 )]. It is clear that FP = I but it is not linearizable because its fixed point 

set is (0) x A1 U { 1) x A’ c A* and it is not isomorphic to any linear subspace of A*. 

On the other hand, if a polynomial map is linearizable then its fixed point set should 

be isomorphic to some affine space. This is also a counterexample to the fixed point 

problem in prime characteristic. 

Now for the Theorem 2.2. If the conditions are not satisfied it does not mean that 

the map is not linearizable. Take, for example, F = [x + 1, y - 3x2 - 2x - 11. Here 

s1 = s2 = 1 and for any integer vector (il, i2) we get $s~ = 1 but F is linearizable 

by conjugation with element cp = [x, y + x3] and cp-‘Fq = [x + 1, y +x1. 
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